3
 min read

A Fab Manager's Dilemma: Maintenance Scheduling vs Productivity KPIs

what should a fab manager concentrate on? maintenance scheduling or production KPIs

Preventive maintenance is a common practice in semiconductor wafer fabrication and essential for overall equipment availability and reliability. A typical approach is to plan maintenance activities ahead of time using simple rules-based models, where the maintenance is run on a particular day, at a particular time. The consequence of such approach, however, is optimising maintenance timing at the expense of production KPIs such as cycle time and throughput. What if we consider it the other way around and treat these KPIs as priority in the objective?

The maintenance scheduling problem

The complexity of semiconductor wafer fabrication entails a huge number of decisions and trade-offs a fab manager has to deal with each day. Preventive maintenance is one of them. The equipment used in the fabrication process is extremely capital intensive; therefore, it is critical that tools are utilised effectively and maintained on a regular basis to avoid any failures. Any servicing requires stopping the tools and suspending it from the manufacturing processes for a given period of time. With a recent shortage of chips, for the automotive industry, in particular, a fab manager faces a significant challenge - how to schedule preventive maintenance operations whilst ensuring maximum OTD and high throughput?

Maintenance scheduling is an established topic of research, with many authors showcasing various ways of solving this scheduling problem using simulation and optimisation techniques. An interesting tech paper on this topic was presented at the Winter Simulation Conference 2020 in December, by A. Moritz et al. “Maintenance with production planning constraints in semiconductor manufacturing” of Mines Saint-Étienne and STMicroelectronics. [the paper]

In this article, Ioannis Konstantelos, our Optimization Technology Lead, reviews the paper and explains Flexciton's approach to this complex topic.  

Technology perspective

The authors focus on identifying the best possible period of time (e.g. a day), across a large time range, in which to carry out maintenance tasks, while “respecting production deadlines and the capacity constraints on tools”. Two mathematical models are presented; in model 1, the maintenance is seen as a task that must be performed in a single period of time, e.g. one day (24h), while model 2 allows maintenance to be distributed across two consecutive periods, e.g. two days (48h).

Both models treat production schedules as fixed i.e. the lot to tools  assignment and timings for production purposes have been decided a priori. As such, the proposed formulation is a discrete-time model1, allowing to perform maintenance only within defined points in time. The model uses the following decision-making variables:

  • A variable that indicates whether a maintenance task should be performed or not.
  • A variable that assigns a maintenance task to the period in which it will be carried out.

There is a limit on the total time allocated to each of production and maintenance tasks.

The model's objective function is a combination of maximising the number of maintenance tasks that can be performed within the time horizon and the earliness of these tasks. A user defines parameters to tune the importance of each of these aspects.

The trade-off between production and maintenance remains unanswered

The two-step approach showcased in the paper leaves a core question unanswered; the trade off between production and maintenance. Typically, production scheduling aims to optimise a particular KPI, such as cycle time or throughput. By treating the production schedule as fixed and optimising the number and earliness of maintenance operations around it, we are ignoring the trade-off to the KPIs that matter and there may well be foregone synergy opportunities.

The paper rightly highlights the need to consider maintenance using a formal mathematical framework. Nevertheless, there are some assumptions that limit the applicability and benefit of the proposed approach.

  • One limitation is the discrete representation of time; continuous-time modelling* would instead allow for a more precise indication of when the various tasks should be carried out. This is especially relevant for modelling more complex tools e.g. photolithography, where maintenance lasts only a fraction of the discrete time.
  • The model makes use of the concept of “tool families”, to capture the fact that many tools are identical, which allows for substantial model simplification. However, in practice, most tools will have individual characteristics (such as the set of recipes they can carry out, or the secondary resources they may be using), which renders them non-interchangeable.
  • Another consequence, mentioned also by the authors, is that all maintenance is treated as optional, with no possibility to mark a particular task as “must-run” since that may require amendments to the original production schedule for feasibility.

Want to know more about the different wafer fab scheduling approaches including heuristics, mathematical and hybrid approaches? Read the following whitepaper, here we cover everything about wafer fab scheduling approaches

Business perspective

Results are presented for 12 real-world case studies, involving around 100 maintenance tasks to be scheduled for 14 tools families over a span of 60 one-hour periods. The more relaxed model (model 2) is shown to perform better, both in terms of the number of maintenance tasks planned as well as total earliness. One strength of the proposed approach is the speed of computation. As the authors state, the proposed model can be the basis for iterative discussions between production and maintenance planners.

Flexciton’s view on solving wafer fab challenges

Ideally, production and maintenance scheduling should be tackled in a single model, where the objective function according to cycle time and throughput applies. This can be achieved by treating maintenance as tasks that need to be scheduled within a specific window. Thereby fab managers can explicitly consider the impact that maintenance tasks have on the schedule such that impact on the production KPIs is minimised. Of course, such integrated approaches result in a substantial increase of problem size and complexity, necessitating the development of solution strategies capable of handling the ensuing complexity. Especially in cases of a large number of maintenance tasks or lengthy maintenance, such constraints can quickly render a problem intractable.

Flexciton offer wafer fabs smart scheduling solution

At Flexciton, we have developed smart scheduling solution that involves decomposition techniques to manage the added complexity introduced by maintenance constraints. The users can describe their maintenance tasks as “optional” or “must-run” as well as having a fixed start time or a flexible time window within which they can be carried out.

The Flexciton engine proceeds to optimise the target production KPIs while respecting maintenance constraints. The resulting production schedule prescribes the best time to carry out maintenance while capturing all individual tools characteristics and respecting all operational constraints so as to achieve the best use of available assets. Learn more about the technology behind Flexciton's smart scheduling solution

* Discrete time and continuous time are two alternative frameworks within which to model variables that evolve over time. Discrete time views values of variables as occurring at distinct, separate "points in time". In contrast, continuous time views variables as having a particular value for potentially only an infinitesimally short amount of time. Between any two points in time there are an infinite number of other points in time


Explore more articles

View all
autonomous fab autonomous manufacturing plant factory semiconductor industry experts panel discussion seagate microchip technology applied materials asml tsmc critical amat infineon micron gf globalfoundries smic kioxia
Read time
 min read
Industry
Accelerating the Future Panel Discussion: Key Takeaways from Industry Leaders

Staying ahead in smart manufacturing technologies has become paramount for global competitiveness. This topic was the focal point of the recent panel discussion webinar hosted by Flexciton.

The semiconductor industry's journey toward fully autonomous manufacturing is underway, driven by advanced technologies and strategic investment. Staying ahead in smart manufacturing technologies has become paramount for global competitiveness. This topic was the focal point of the recent panel discussion webinar, hosted by Jamie Potter, Flexction CEO & Cofounder. The panel featured industry leaders representing fabs and suppliers: Matthew Johnson, VP of Wafer Fab Operations at Seagate; Patrick Sorenson, Industrial Engineer at Microchip Technology; Francisco Lobo, CEO of Critical Manufacturing; and Madhav Kidambi, Technical Marketing Director at Applied Materials.

Survey Insights: Where Are We Now?

The panel discussion was initiated with a presentation of the findings from Flexciton's inaugural Front End Manufacturing Insights survey, conducted among fabs in the US, Europe, and Asia. Key takeaways included:

  • A majority of respondents see autonomous manufacturing as achievable within the next decade.
  • Data standardization and integration remain major barriers, delaying scalable solutions.
  • Cloud computing, IoT and Mathematical Optimization stand as the top three advanced technologies that fabs have adopted so far. 

These insights laid a strong foundation for a lively discussion, highlighting the shared vision while addressing divergent strategies and challenges.

Insights from Industry Experts

Pragmatism Over Perfection in Data Models

Francisco Lobo emphasized the importance of starting with what’s available when building scalable solutions.

“Instead of building a complete model from scratch, leverage existing standards and your MES infrastructure. Begin with a pragmatic approach and evolve as you learn.”

This iterative strategy ensures companies can start deriving value early, without waiting years for a perfect model to be developed.

Strategic Investments In Downturns

While many fabs postpone investments during downcycles, Matthew Johnson emphasizes that smart manufacturing investments should be continuous rather than cyclical. He highlighted the strategic advantage of such approach:

“In down cycles, you often need these solutions the most. For example, using smart manufacturing to scale metrology tools through sampling can significantly stretch your existing resources without capital-heavy investments.”

His insight underscores how downturns provide a window to refine processes for long-term gains.

Getting Leadership Buy-in

Securing leadership support for smart manufacturing investments remains challenging when benefits aren't immediately apparent. Patrick Sorenson shares that the ROI justification was easier during the recent upcycle:

"If we just get a few more lots out of the fab when we have more demand than capacity, that will pay for itself."

In other scenarios, focus on demonstrating benefits through yield improvements, capital avoidance, or labor efficiency.

Industry Alignment on the Vision

Madhav Kidambi observed a growing consensus around the end goal of autonomous manufacturing, even as companies differ in their pathways:

“The vision of Lights Out manufacturing is clear, but strategies are evolving as companies learn how to justify and sequence investments to sustain the journey.”

Ecosystem Collaboration and The Path Towards Autonomy

A key theme emerging from the discussion is the importance of collaboration between suppliers and fabs. This includes:

  • Open platforms and integration capabilities
  • Standardized data protocols
  • Partner ecosystems for specialized solutions
  • Shared innovation initiatives



As the industry progresses toward autonomous manufacturing, success will depend on:

  • Maintaining continuous investment in smart technologies
  • Taking pragmatic approaches to data integration
  • Developing clear ROI frameworks
  • Fostering collaboration across the ecosystem
  • Building upon existing systems and standards

As Matt from Seagate concludes,

"Fab operation is really a journey of continuous improvement, and the pursuit of smart technologies is a fundamental tenet of our strategy to ensure that we meet the objectives as an organization."

Watch the Full Webinar

The conversation is packed with actionable insights on overcoming barriers, achieving quick wins, and navigating the complexities of smart manufacturing adoption. Don’t miss out—click here to watch the full discussion recording.

uk gov semiconductor strategy funding grant innovate uk flexciton seagate optimization production planning scheduling deep tech semi wafer fab infineon stmicro tsmc nxp broadcom
Read time
 min read
News
Innovate UK invests in breakthrough technology developed by Flexciton and Seagate

Innovate UK, part of UK Research and Innovation, has invested in Flexciton and Seagate Technology's production planning project to help improve UK semiconductor manufacturing.

London, UK – 1 Oct – Flexciton, a UK-based software company at the forefront of autonomous semiconductor manufacturing solutions, is excited to announce investment from Innovate UK in a strategic collaboration with Seagate Technology’s Northern Ireland facility. Innovate UK, the UK’s innovation agency, drives productivity and economic growth by supporting businesses to develop and realize the potential of new ideas. As part of their £11.5 million investment across 16 pioneering projects, this collaboration will help develop and demonstrate cutting-edge technology to boost semiconductor manufacturing efficiency and enhance the UK’s role in the global semiconductor supply chain.

Jamie Potter, CEO and Cofounder of Flexciton, commented:

"We are thrilled to partner with Seagate Technology to bring yet another Flexciton innovation to market. By combining our autonomous scheduling system with Flex Planner, we are enhancing productivity in semiconductor wafer facilities and driving greater adoption of autonomous manufacturing."

The partnership aligns directly with the UK government’s National Semiconductor Strategy, which seeks to secure the UK’s position as a key player in the global semiconductor industry. Flexciton’s contribution to this strategy is not just a testament to its cutting-edge technology but also highlights the company’s role in reinforcing supply chain resilience and scaling up manufacturing capabilities within the UK.

Flex Planner: A breakthrough solution for chip manufacturing

At the heart of this project is Flex Planner, the first closed-loop production planning solution for semiconductor manufacturing with the ability to control the flow of WIP in a fab over the next 2-4 weeks, autonomously avoiding dynamic bottlenecks, reducing cycle times, and improving on-time delivery performance.

Supporting the UK's semiconductor growth

The UK government’s investment in semiconductor innovation underlines its commitment to fostering cutting-edge solutions that bolster the sector’s growth. The semiconductor industry is projected to grow from £10 billion to £17 billion by 2030, with initiatives like this collaboration driving the innovation necessary to achieve these goals.

Flexciton’s partnership with Seagate exemplifies how collaboration between technology innovators and manufacturers can lead to transformative advances in the industry. The funding from Innovate UK enables both companies to develop and test solutions that not only enhance productivity but also position the UK as a critical link in the global semiconductor ecosystem.

About Flexciton

Flexciton is pioneering autonomous technology for production scheduling and planning in semiconductor manufacturing. Leveraging advanced AI and optimization technology, we tackle the increasing complexity of chipmaking processes. By simplifying and streamlining wafer fabrication with our next-generation solutions, we enable semiconductor fabs to significantly enhance efficiency, boost productivity, and reduce costs. Empowering manufacturers with unmatched precision and agility, Flexciton is revolutionizing wafer fabrication to meet the demands of modern semiconductor production.

For media inquiries, please contact: media@flexciton.com

path to the autonomous factory autonomous plant wafer fab pathway to autonomy TSMC SMIC SSMC globalfoundries micron semiconductor industry semiconductors bosch flexciton inficon critical manufacturing
Read time
 min read
Industry
The Pathway to the Autonomous Wafer Fab

The semiconductor industry is set to receive $1tn in investment over the next six years, driven by AI and advanced technologies, with over 100 new wafer fabs expected. However, labor shortages continue to pose a challenge, pushing the need for autonomous wafer fabs to ensure continued growth.

Over the next 6 years, the semiconductor industry is set to receive around $1tn in investment. The opportunities for growth – driven by the rapid rise of AI, autonomous and electric vehicles, and high-performance computing – are enormous. To support this anticipated growth, over 100 new wafer fabs are expected to emerge worldwide in the coming years (Ajit Manocha, SEMI 2024).

However, a significant challenge looms: labor. In the US, one-third of semiconductor workers are now aged 55 or older. Younger generations are increasingly drawn to giants like Google, Apple and Meta for their exciting technological innovation and brand prestige, making it difficult for semiconductor employers to compete. In recent years, the likelihood of employees leaving their jobs in the semiconductor sector has risen by 13% (McKinsey, 2024).

To operate these new fabs effectively, the industry must find a solution. The Autonomous Wafer Fab, a self-optimizing facility with minimal human intervention and seamless production, is looking increasingly likely to be the solution chipmakers need. This vision, long held by the industry, now needs to be accelerated due to current labor pressures.

Thankfully, rapid advancements in artificial intelligence (AI) and Internet of Things (IoT) mean that the Autonomous Wafer Fab is no longer a distant dream but an attainable goal. In this blog, we will explore what an Autonomous Wafer Fab will look like, how we can achieve this milestone, the expected outcomes, and the timeline for reaching this transformative state.


What will an Autonomous Wafer Fab look like?

Imagine a wafer fab where the entire production process is seamlessly interconnected and self-regulating, free to make decisions on its own. In this autonomous environment, advanced algorithms, IoT, AI and optimization technologies work in harmony to optimize every aspect of the manufacturing process. From daily manufacturing decisions to product quality control and fault prediction, every step is meticulously coordinated without the need for human intervention.


Key features of an Autonomous Wafer Fab:

Intelligent Scheduling and Planning: The heart of the autonomous fab lies in its scheduling and planning capabilities. By leveraging advancements such as Autonomous Scheduling Technology (AST), the fab has the power to exhaustively evaluate billions of potential scenarios and guarantee the optimal course for production. This ensures that all constraints and variables are considered, leading to superior outcomes in terms of throughput, cycle time, and on-time delivery.

Real-Time Adaptability: An autonomous fab is equipped with sensors and IoT devices that continuously monitor the production environment. These devices can feed real-time data into the scheduling system, allowing it to dynamically adjust schedules and production plans in response to any changes or disruptions. 

Digital Twin: Digital Twin technology mirrors real-time operations through storing masses of data from sensors and IoT devices. This standardized data schema allows for rapid introduction of new technologies and better scalability. Moreover, by simulating production processes, it helps to model possible scenarios – such as KPI adjustments – within the specific constraints of the fab.

Predictive maintenance: Predictive maintenance systems will anticipate equipment failures before they occur, reducing downtime and extending the lifespan of critical machinery. This proactive approach ensures that the fab operates at peak efficiency with minimal interruptions. Robotics will carry out the physical maintenance tasks identified by these systems, and when human intervention is necessary, remote maintenance capabilities will allow technicians to diagnose and address issues without being on-site.

The Control Room: In an autonomous fab, decision-making is driven by data and algorithms. The interconnected system can balance trade-offs between competing objectives, such as maximizing throughput while minimizing cycle time, with unparalleled precision. That said, critical decisions such as overall fab objectives may still be left to humans in the “control room”, who could be on the fab site or 9000 km away… 


How can we get there?

Achieving the vision of an Autonomous Wafer Fab requires a multi-faceted approach that integrates technological innovation, strategic investments, and a cultural shift towards embracing automation. Here are the key steps to pave the way:

A Robust Roadmap: All fabs within an organization need to have a common vision. Key milestones need to be laid out to help navigate each fab through the transition with clear actions at each stage. SEMI’s smart manufacturing roadmap offers an insight into what this could look like.  

Investing in Novel Technologies: The pivotal step towards autonomy is investing in the latest technologies, including AI, machine learning, AST, and IoT. These technologies form the backbone of the autonomous fab, enabling intelligent planning and scheduling, real-time monitoring, and adaptive control.

Data Integration and Analytics: A crucial aspect of autonomy is the seamless integration of data from various sources within the fab. By harnessing big data analytics, fabs can not only gain deep insights into their operations, but they will have the correct data in place to support autonomous systems further down the line. 

Developing Skilled Workforce: While the goal is to minimize human intervention, the semiconductor industry will still require skilled professionals who can manage and maintain advanced systems. Investing in workforce training and development to fill the current void is essential to ensure a smooth transition.

Collaborative Ecosystem: Even the biggest of chipmakers is unlikely to reach the autonomous fab all on their own. Collaboration with technology providers, research institutions, and industry partners will be key. Sharing knowledge and best practices can accelerate the development and deployment of autonomous solutions.

Pilot Programs and Gradual Implementation: Transitioning to an autonomous fab should be approached incrementally. Starting with pilot programs to test and refine technologies in a controlled environment will help identify challenges and demonstrate the benefits. Gradual implementation allows for continuous improvement and adaptation.


How will fabs benefit? 

The transition to an Autonomous Wafer Fab promises a multitude of benefits that will revolutionize semiconductor manufacturing:

Enhanced Efficiency: By optimizing production schedules and processes, autonomous fabs will achieve higher throughput and better resource utilization. This translates to increased production capacity and reduced operational costs.

Better Quality: Advanced process control and real-time adaptability ensure consistent product quality, minimizing defects and rework. This leads to higher yields and greater customer satisfaction.

Reduced Downtime: Predictive maintenance and automated decision-making reduce equipment failures and production interruptions. This results in higher uptime and more reliable operations.

Improved Flexibility: Autonomous fabs can quickly adapt to changing market demands and production requirements. This flexibility enables manufacturers to respond rapidly to customer needs and stay competitive in a dynamic industry.

Cost Savings: The efficiencies gained from autonomous operations lead to significant cost savings. Reduced labor intensity, lower material waste, and optimized energy consumption contribute to a more cost-effective production process.


Sounds great, but when will it become a reality?

The journey towards an Autonomous Wafer Fab is well underway, but the timeline for full realization varies depending on several factors, including technological advancements, industry adoption, and investment levels. However, significant progress is expected within the next decade.

Short-Term (1-3 Years):

  • Implementation of pilot programs and continual adoption of AI, IoT, AST and other advanced technologies.
  • Incremental improvements in scheduling, process control, and maintenance practices.

Medium-Term (3-7 Years):

  • Broader adoption of autonomous solutions across the industry.
  • Enhanced data integration and analytics capabilities.
  • Development of a skilled workforce to support autonomous operations.

Long-Term (7-10 Years and Beyond):

  • Full realization of the Autonomous Wafer Fab with minimal human intervention.
  • Industry-wide standards and best practices for autonomous manufacturing.
  • Continuous innovation and refinement of autonomous technologies.


Conclusion

The pathway to the Autonomous Wafer Fab is a transformative journey that holds immense potential for the semiconductor industry. By embracing advanced technologies, fostering collaboration, and investing in the future workforce, fabs can unlock unprecedented levels of efficiency, quality, and flexibility. Autonomous Scheduling Technology, as a key pillar, will play a crucial role in this evolution, driving the industry towards a future where production is seamless, self-optimizing, and truly autonomous. The vision of an Autonomous Wafer Fab is not just a distant possibility but an imminent reality, poised to redefine the landscape of semiconductor manufacturing.

Now available to download: our new Autonomous Scheduling Technology White Paper

We have just released a new White Paper on Autonomous Scheduling Technology (AST) with insights into the latest advancements and benefits.

Click here to read it.